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(IV) Conclusions 

It is evident from the above results that the use of population 
optimized basis functions can result in a method which, com
pared to the methods presently used for one-center integrals 
in most semiempirical methods, requires fewer parameters but 
predicts with equal or better accuracy the energies of atoms 
and ions in a wide variety of states. The absence of parameters 
which depend on atom type may open the path to a semiem
pirical molecular orbital method which will be relatively easy 
to parameterize for a wide variety of atoms. 

The accuracy of the atomic energy predictions will probably 
be improved by development of a modified form of eq 1 in
volving spin populations. Such a form should be used in open 
shell molecular orbital calculations and, of course, in the above 
calculations of valence shell atomic energies, as few of the 
states calculated were closed shell. The improvement such a 
modification would make, however, must be no larger than the 
relatively small error in the present calculations. 

An additional path for improvement is the inclusion of ex
ternal coulombic effects on the orbital optimization. This ad
ditional effect may well be necessary in future molecular cal
culations using population optimized basis functions. 

(I) Introduction 

The primary objective of the work reported in this series 
of papers has been the development of a quantitative treatment 
of molecular properties accurate enough, reliable enough, and 
cheap enough to be of practical value in chemistry, in particular 
in areas where experimental data are lacking or where current 
experimental procedures fail. For reasons that have been dis
cussed in detail elsewhere,2 we have always felt that the only 
hope of success lay in a parametric approach and our efforts 
have accordingly been directed to such semiempirical versions 
of the Roothaan3-Hall4 (RH) SCF-LCAO-MO method. 

In order to keep the cost of the calculations within bounds, 
it is necessary to simplify the RH treatment. Our previous work 
has been based on the simplified versions developed by Pople 
et al.,5 in particular INDO.6 Here the number of electron re
pulsion integrals is greatly reduced by using the core approx
imation, together with a minimum basis set of valence shell 
AO's, and by neglecting all integrals involving differential 
overlap except for the one-electron core resonance integrals 
(/?„„) and one-center exchange integrals (nv, fiv). 

The core approximation is certainly reasonable and the 
neglect of electron repulsion integrals involving diatomic dif-
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ferential overlap can also be justified.7 These are the as
sumptions made in the NDDO approximation.6'8 The further 
neglect of electron repulsion integrals involving one-center 
overlap, as in INDO, is, however, unjustifiable,7 so NDDO 
would seem the logical basis for a semiempirical treatment. 
In previous studies we have nevertheless used INDO because 
the problems of parametrization are much simpler and because 
less computation is involved. 

In the CNDO5'9 and INDO5'6 approximations, the repulsion 
integrals (UM, VV) between any AO 0M of atom A and any AO 
0,, of atom B are set equal (=7AB), regardless of whether 0M 
and <$>„ are of s, p<x, or px type. This simplification is essential 
if the results of the calculation are to be invariant for rotation 
of the coordinate axes.58 The integrals are not in fact equal and 
in NDDO they are not assumed to be equal. Moreover in 
NDDO there are a number of additional Dicentric integrals 
to be considered, which involve one-center differential overlap 
and are consequently neglected in CNDO or INDO. For a 
given pair of dissimilar first-row atoms, there are 22 distinct 
bicentric NDDO integrals to be determined instead of just one 
in the simple treatments. 

In the NDDO calculations so far reported (e.g., ref 10-13) 
the electron repulsion integrals were found by direct quadra-
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ture, using Slater-Zener orbitals. Such an approach runs 
counter to the philosophy2 underlying treatments of the 
MINDO type where allowance is made for electron correlation 
by suitable modification of the electron repulsion integrals. In 
our INDO-based treatments,14"16 which we term MINDO, 
there is just one such integral to be determined for each pair 
of atoms. The problem is therefore similar to that involved in 
the analogous treatment of conjugated molecules, using the 
Hiickel a, 7r approximation, and can be solved in a similar 
manner, using the approach suggested by Pariser and Parr.17 

The problem in NDDO is much more difficult since there are 
now 22 distinct bicentric integrals to be evaluated. It is not at 
all obvious how schemes appropriate to the ir approximation 
or MINDO can best be generalized to meet the requirements 
of NDDO. 

One such formalism was developed here 2 years ago and 
used in a preliminary parametrization18 of NDDO. While the 
resulting treatment'9 seemed promising and certainly suc
ceeded in overcoming certain difficulties that had been en
countered in MINDO, the underlying formalism suffered from 
certain inconsistencies. We have now developed20 an alterna
tive and seemingly more attractive procedure for estimating 
the NDDO repulsion integrals and have used it in a complete 
reparametrization of NDDO for hydrogen, carbon, nitrogen, 
and oxygen. This paper describes the development of the new 
treatment, which we term MNDO,'9 together with the final 
values for the parameters. The following papers compare re
sults for various properties of a wide range of molecules cal
culated by MNDO with those given by the final version of 
MINDO (MINDO/316) and by experiment. 

(II) Basic Approximations 
The treatment here is confined to closed shell molecules and 

to the valence electrons in them, these being assumed to move 
in the field of a fixed core composed of the nuclei and inner 
shell electrons (core approximation). The valence shell MO's 
(\pi) are represented by linear combinations of a minimum 
basis set of valence shell AO's ((/>„); 

f; = Z W , (1) 
V 

The coefficients C„,- are found from the Roothaan3-Hall4 

equations which in the NDDO approximation assume the 
form: 

E (F111, - Etb^Ci = O (2) 

where Zs, is the eigenvalue of the MO i/', and 5M„ the Kronecker 
5. The elements F1x,, of the Fock matrix are the sum of a one-
electron part Hf11, (core Hamiltonian) and a two-electron part 
G111,, and the electronic energy Ee\ is given by: 

Ea = V2 E E P^(H111, + F1111) (3) 

where P111, is an element of the bond order matrix. 
From now on, we shall assume that the AO's (J)11 and 4>v are 

centered at atom A and the AO's 4>\ and 4>a at atom B (A -^ 
B). If necessary, superscripts A or B will assign a particular 
symbol to atom A or B, respectively. In this notation, the 
NDDO Fock matrix elements are: 

A 

Ff111 = Uf111 + E VnnM + E P»»[(w, vv) - 1Z2 (M", M")] 
B „ 

+ E E / V ( ^ , W) (4) 
B \,a 

/7M" = E v>xi>,B + xk Pf1Ai(Hv, M") - (w,"")] 
B 

+ E E/V(M", A*) (5) 
B \,a 

/ v = /V - xk E E P*Aw>, M (6) 
V O 

The following terms appear in the Fock matrix: 
(a) One-center one-electron energies U1111 which represent 

the sum of the kinetic energy of an electron in AO (J)11 at atom 
A and its potential energy due to the attraction by the core of 
atom A. 

(b) One-center two-electron repulsion integrals, i.e., Cou
lomb integrals (mi, vv) = gM„ and exchange integrals (nv, \iv) 
= flfu,. 

(c) Two-center one-electron core resonance integrals 0^. 
(d) Two-center one-electron attractions V11^B between an 

electron in the distribution ^H^„ at atom A and the core of atom 
B. 

(e) Two-center two-electron repulsion integrals (iiv, A<x). 
The total energy iitotmo' of the molecule is the sum of the 

electronic energy Ea and the repulsions £ABcore between the 
cores of atoms A and B. 

£totmo1 = Ea + E E £ABcore (7) 
A<B 

The heat of formation AZZf"10' of the molecule is obtained from 
its total energy by subtracting the electronic energies Ee\

A and 
adding the experimental heats of formation AHf* of the atoms 
in the molecule;21 

A//f™' = £to,mo1 - E £eiA + E A/ZfA (8) 
A A 

The electronic energies of the atoms are calculated from re
stricted single-determinantal wave functions using the same 
approximations and parameters as in molecular NDDO cal
culations. 

In our approach, the various terms in the Fock matrix and 
the repulsions /iABcore are not evaluated analytically. They are 
determined either from experimental data or from semiem-
pirical expressions which contain numerical parameters that 
can be adjusted to fit experimental data. It is hoped that the 
introduction of adjustable parameters will compensate both 
for the basic deficiencies of the single-determinantal MO ap
proach (i.e., neglect of electronic correlation) and for the ad
ditional errors due to the simplifying assumptions of the 
NDDO scheme. 

We shall now discuss the semiempirical approximations that 
we considered for the various quantities in the NDDO treat
ment. Our choices were partly guided by previous experiences 
with the MINDO parametrization. 

The one-center terms U1111, gM„, and h^ appear in the INDO 
and NDDO Fock matrix and can be treated similarly in both 
cases. In MNDO, these terms are evaluated as in MINDO/ 
3,'6 using a procedure22 based on Oleari's method,23 in which 
the theoretical energies of several valence states of the atom 
and its ions are fitted to the corresponding spectroscopic values. 
Since this procedure22 allows an independent calculation of 
all the one-center terms, it is preferable to the alternatives 
based on the Slater-Condon parameters6 (e.g., INDO,6 

MINDO/1,'4 and MINDO/2,'5) where certain relationships 
between the one-center integrals have to be assumed. 

The semiempirical values22 for the one-center repulsion 
integrals gM„ and h^ are much smaller than the corresponding 
analytical values. This reduction is attributed17 to the Cou-
lombic correlation between the motions of the electrons which 
tends to keep them apart at every moment and to decrease their 
repulsion. By deriving the one-center repulsion integrals from 
experimental data, we automatically make some allowance for 
the correlation effects that are formally neglected in the MO 
approach. 

In this situation, it would clearly be inconsistent to evaluate 
the two-center repulsion integrals from analytical formulas, 
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Figure 1. Point charge configurations corresponding to various multipoles. 
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as was done in the published NDDO studies.10-13 We have 
therefore developed a semiempirical model for these integrals 
that takes correlation effects into account. We shall now de
scribe the basic approximations of the model, mathematical 
details being given elsewhere.20 

The two-center repulsion integrals (/J.V, Xa) represent the 
energy of interaction between the charge distributions e</v</>„ 
at atom A and e<t>\4>a at atom B (elementary charge e). Clas
sically, they are equal to the sum over all interactions between 
the multipole moments M\m of the two charge distributions,24 

the subscripts / and m specifying the order and orientation of 
the multipoles. Based on this classical concept, the two-center 
repulsion integrals are expanded25-26 in terms of semiempirical 
multipole-multipole interactions [MA/im, MB/2TO]: 

Uw. Xa) = E ZE [M\m, M*hm] (9) 
/i h m 

The semiempirical multipole-multipole interactions are re
quired to show the correct behavior in the limits RAB ~* °° and 
•RAB "* O (interatomic distance /?AB)^ For RAB ~* °°, they have 
to converge to the classical values for the interactions. For Z?AB 
= O, they must reproduce the semiempirical values for the 
corresponding one-center repulsion integrals (see above). Both 
requirements are met by the following point charge approxi
mation: 

Each multipole M/m is represented by an appropriate con
figuration [Mim] of 2' point charges of magnitude e/2', with 
charge separations Z)/. The interaction [MA/,m, MBi2m] be
tween two multipoles is then calculated by applying an ap
propriate semiempirical formula to each of the interactions 
between the point charges in the two configurations and by 
summing over all these point charge interactions. Denoting the 
distance between the point charges i and; in the interacting 
configurations at atoms A and B by Z?,y, we obtain: 

[MA
hm, M\m] = 

2'i+'2,-
(10) 

where/i(7?,y) stands for any semiempirical expression which 
behaves properly in the limits RAB ""*• °° and 7?AB ~~* 0. 

In order to calculate the distances R,j for a given interatomic 
distance RAB, we have to define the relevant point charge 
configurations. With a minimal sp basis set for the valence 
electrons, there are only four configurations to be considered 
which are shown in Figure 1. [q] represents the monopole of 
the charge distributions ss and papa, [na] the dipole of the 
distributions sp„, [Qaa] the linear quadrupole of the distri
butions PaPa, and [Q„^] the square quadrupole of the distri
butions pap^ (a,/3 = x, y, or z). No other configurations are 
necessary since the higher multipole moments of our charge 
distributions vanish by symmetry. 

The charge separations Z)/ in the dipole and quadrupole 
configurations (see Figure 1) are determined by the condition 
that the multipole moment of each configuration is equal to 

that of the corresponding charge distribution. For first-row 
atoms, we obtain:20 

5 (4f2sf2p)5/2 

Z)1 = (11) 

(12) 

3 ] / 2 ( f 2 s + f2p)6 

/>2 = (3 /2) ' /2 f 2 p - i 

where f & and fop are the Slater exponents of the 2s and 2p AO, 
respectively. The values used are shown in Table IV (see eq 
25). 

For the semiempirical function f\(Rij) in (10), we investi
gated the use of formulas based on the Dewar-Sabelli27-
Klopman28 (DSK) approximation: 

/1(/?,y)=[Z?,y2+(pA/1+pB/2)2]-1/2 (13) 

and on the Mataga-Nishimoto29 (MN) approximation 

MRu) = [R<J-
 l 

PAh + P V 
(14) 

With an sp basis set, both functions make use of three additive 
terms p/ for each element which are characteristic of mono-
pole, dipole, and quadrupole (/ = 0,1, 2). The additive terms 
pi are chosen so that eq 10 yields the correct semiempirical 
one-center limit for the interaction between two monopoles 
(gss), two dipoles (h^), and two quadrupoles (^pp). Accord
ingly, po is equal to e2/2gss in the DSK approximation and to 
gss/2e2 in the MN approximation; the values for p\ and p2 are 
calculated by numerical methods.20 

Having defined the charge separations Z)/ and the additive 
terms p/, the semiempirical expressions for the two-center 
MNDO repulsion integrals are given by (9), (10), (13), and 
(14). The integral (ss, spz) will serve as an example. 

For (ss, spz), expansion 9 reduces to a single term, [qA, p.Bz], 
since all other multipole moments vanish. With the local 
coordinate system shown in Figure 2, we obtain by inspection, 
in the DSK approximation: 

(ss,spz) = [qA 
,n*z] = -(e2/2)[(RAB- £B i)2 

+ (PAO + P B , ) 2 ] 21-1/2 

+ (e2/2)[(RAB + £B i)2 + (PAo + PB . ) 2 ] - ' / 2 (15) 

Analogous explicit formulas for all the nonvanishing two-
center repulsion integrals are available20 for the local coordi
nate system of Figure 2. In MNDO, the semiempirical inte
grals are first calculated from these formulas in the local 
coordinate system and then transformed to the molecular 
coordinate system. 

It should be noted that our definitions of the charge sepa
rations Z)/ and the additive terms p/ ensure the proper behavior 
of each semiempirical repulsion integral in the limits Z?AB ~* 
oo and Z?AB ~* 0. Comparison of the semiempirical and ana
lytical integrals shows20 that both are very similar at large 
interatomic distances (RAB > 3A); at small and medium dis
tances, the semiempirical integrals are appreciably smaller, 
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Figure 2. Two interacting point charge configurations [qA, Mz8]- The 
nucleus of atom A is in the origin of the coordinate system, and that of 
atom B on the positive z axis at a distance /?AB-

the difference increasing with increasing overlap of the two 
interacting charge distributions, due to the inclusion of cor
relation effects in the semiempirical integrals. 

Let us now turn to the core-electron attractions V111,3 and 
the core-core repulsions E&tfore. In semiempirical methods, 
these quantities are usually expressed in terms of the two-
center repulsion integrals, for the following reasons. Early work 
at the CNDO and INDO level indicated6-9 that the core-
electron attractions are best represented by a Goeppert-
Mayer-Sklar potential with neglect of penetration integrals, 
in order to avoid a collapse of molecular geometries to ex
tremely short bond lengths. The neglect of the penetration 
integrals decreases the absolute values of the core-electron 
attractions significantly; as a consequence, the core-core re
pulsions must likewise be reduced from their point-charge 
values Z\Zse2/RAB (core charges ZA and ZB) in order to 
keep the balance between the attractions and repulsions in the 
molecule. 

In the development of the MNDO method, we investigated 
the following functions for the core-electron attractions and 
the core-core repulsions: 

V^B = ~Z B ( M
A A sBsB) + / 2 ( * A B ) (16) 

£AB
core = ZAZB(sAsA, SBSB) + / 3 C R A B ) (17) 

Note that in (16) and (17) the effect of the atomic core is 
simulated by the valence-shell charge distribution ss which, 
like the core, has no multipole moments higher than the mo-
nopole. 

If the functions /2(RAB) in (16) and fi(RA%) in (17) are 
both zero, the net electrostatic interaction between two neutral 
atoms almost vanishes for every value of RAB since the two-
center two-electron repulsions, the core-electron attractions, 
and the core-core repulsions almost cancel.30 This would be 
quite unrealistic since we expect the net electrostatic repulsion 
between neutral atoms to increase slowly with decreasing in
teratomic distance. This effect can be reproduced by proper 
choice of the functions/2(i?AB) and/3(/?AB). In our studies, 
we always assumed one of the two functions to be zero and tried 
different expressions for the other function. These expressions 
usually included an exponential term of the form exp(—a/?AB), 
with an adjustable a parameter, so that the net repulsion be
tween neutral atoms vanishes in the limit /?AB —*" °°-

The remaining quantities in the MNDO method are the 
one-electron resonance integrals /3Mx which provide the main 
contribution to the bonding energy of a molecule.31 As in most 
previous semiempirical methods,5'14"16 they are assumed to 
be proportional to the corresponding overlap integrals S^: 

The overlap integrals between the Slater basis AO's are eval
uated analytically, the orbital exponents being treated as ad
justable parameters (Table III). For the functions/^RAB) in 
(18), we did not study any expressions with an explicit de
pendence on the interatomic distance /?AB although it is in 
principle possible to include such a dependence. The expres
sions we investigated always contained an adjustable /J pa
rameter IU/^RAB)-

(III) Parametrization Procedure 

Our next problem is to determine the best forms for the 
parametric functions /1-/4 and the best values of the param
eters in them. We have been unable to find any theoretical 
considerations that are of the slightest assistance in this con
nection. The parameters in treatments such as this are so 
intimately interlinked that it is impossible to predict the effects 
of changes in them or, conversely, to deduce the changes that 
should be made in order to correct some specific error. The only 
feasible procedure is a purely empirical one, based on com
parisons of calculated and observed properties for a carefully 
chosen "basis set" of molecules. The main factors to be con
sidered are the ability of a given set of functions and parame
ters to reproduce the whole range of properties being studied 
and the uniformity of the errors over the compounds in the 
basis set. The latter should of course be chosen to cover as many 
different types of bonding situations as possible. The final 
candidate is then tested by calculations for a wide range of 
molecules, concentrating on those which previous experience 
has shown to be the most recalcitrant. If the results for some 
particular type of molecule are unsatisfactory, e.g., compounds 
containing triple bonds or four-membered rings, the parame
trization is repeated using a basis set in which additional 
compounds of this type are included. 

For a given choice of functions /1-/4, the parameters are 
determined by a nonlinear least-squares optimization proce
dure recently developed here,32 based on an algorithm devised 
by Bartels.33 Our problem is to find the optimum values for a 
set of parameters Xi1 (k= \,2,...,K)by fitting the measured 
values Yi(I= 1,2,..., L) of L properties of the M molecules 
in the basis set. This is done by minimizing the sum (Y) of the 
squares of the weighted errors AF/ in the calculated values; 

Y=T. (AYi)2 = E [K/(calcd) - F , (obsd)]W (19) 
/=1 /=1 

where Wi is a weighting factor for the quantity F/. Choice of 
the weighting factors allows different emphasis to be given to 
errors in different types of property (total energy, bond lengths, 
bond angles, dipole moments, ionization potentials, etc.). 

We need to find the minimum of Y as a function of the pa
rameters Xk, i.e., a minimum in a ^-dimensional surface. The 
most efficient methods for solving such problems are based on 
an iterative procedure. Starting at a point defined by a given 
set of values for the parameters Xk, we estimate the best di
rection in which to proceed to reach the minimum. A line 
search in this direction leads to a first approximation to the 
minimum, and the procedure is then repeated using this as the 
starting point. 

The simplest treatment of this kind is the method of steepest 
descents, where the search direction vector is taken to be the 
direction of maximum gradient. More sophisticated procedures 
(e.g., Davidon-Fletcher-Powell,34 Murtagh-Sargent35) de
termine the search direction vector using an approximation to 
the inverse Hessian matrix which is updated in each cycle. All 
these procedures, however, need values for the derivatives of 
the function being minimized with respect to all the variables. 
In the present case, derivatives of Y with respect to the pa
rameters Xk can be found only by finite difference which in-
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Table I. Standard Molecules and Reference Functions for 
Parametrization with Fixed Geometries 

Table II. Weighting Factors 

Reference functions 

Molecule AHf Grad* IPc 

H2 

CH4 

C2H6 

C J H 4 

CJHJ 

> 

a 

X 
X 
X 
X 
X 

X 

X 

X 
X 
X 
X 
X 

X 
X 

X 
X 

C(CH3), 

N J 

NH3 

CH3NH2 

(CH3)jNH 

[>H 
N2H4 

HCN 
CH3CN 
(CN)2 

H J O 
CH3OH 
(CH3)20 

> 

H2Oj 
O3 
CO 
COj 
H J C O 

( C H 3 ) J C 0 

CH2CO 
(CHO)2 

HCOOH 
HCOOCH3 

X 
X 
X 
X 

X 

X 
X 
X 
X 

X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 

X 
X 
X 

X 

X 
X 

X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 

X 
X 
X 

X 

X 

X 

aHeat of formation. * Gradient of the energy with respect to a 
geometrical variable. Note that for each of the molecules marked, 
the gradients for all independent geometrical variables are included 
as reference functions; e.g., for ethylene, the list of reference func
tions contains three gradients (C-C bond length, C-H bond length, 
HCC angle). cFirst ionization potential. ^Dipole moment. 

volves a large number of SCF calculations (more SCF calcu
lations, in fact, than to carry out the actual line search). The 
amount of computation required would become excessive even 
for molecules of moderate size. 

We therefore decided to use Bartels' nonlinear least-squares 
procedure33 which assumes an initial search direction and 
refines this by information generated in the successive line 
searches, without calculating derivatives. The number of 
function evaluations (in our case SCF calculations) is thereby 
greatly reduced. The main difficulty lies in the arbitrary choice 
of the initial search direction. To account for the possibility that 
this is not realistic, each fourth cycle is used to explore a di
rection orthogonal to the predicted one ("side step") which 
ensures that no parts of the surface are overlooked. The par
ameterization procedure based on Bartels' algorithm is clearly 
superior to the one15 previously used here for four reasons. 
First, it does not rely on the validity of first-order Taylor ex
pansions. Second, it adjusts all parameters simultaneously. 
Third, it does not suffer from nonconvergence. And fourth, it 
is completely automatic once the following information has 
been provided: (a) set of M standard molecules, L reference 
quantities Yi, and weighting factors Wi, (b) starting values for 

Reference function Weighting factor" 

Heat of formation 
Ionization potential 
Dipole moment 
Gradient for bond length* 
Gradient for bond angle* 
Gradient for dihedral angle* 
Bond lengthc 

Bond anglef 

Dihedral angle r 

1 kcal ' mol 
1OeV-1 

2OD- ' 
4 X 1O-6 kcal - 1 mol A 
8 X 1O -4 kcal - 1 moldeg 
2 X 1O-3 kcal - 1 moldeg 
100 A"1 

(2/3) deg-' 
(1 /3)deg- ' 

" The dimensions are chosen to make the weighted errors AV/ di-
mensionless. * For parametrization with fixed geometries. c For 
parametrization with optimized geometries. 

the K parameters Xk to be optimized; (c) convergence criteria 
for the optimization. 

The reference functions for our standard molecules (see 
Table I) include heats of formation, geometrical variables, 
dipole moments, and first vertical ionization potentials, the 
latter being calculated by Koopmans' theorem.36 As regards 
geometrical variables, two procedures are possible. In the first 
("fixed geometries") the calculations are carried out at the 
experimental geometries, and the gradients of the energy with 
respect to the geometrical variables are taken as reference 
functions. In the second ("optimized geometries"), the 
geometries are calculated by minimizing the energy by the 
DFP method,34 the optimized bond lengths, bond angles, and 
dihedral angles being directly used as reference quantities. 
Calculations with fixed geometries are at least ten times faster 
than those with optimized geometries and the results are not 
greatly different. We therefore used fixed geometries in pre
liminary studies of the performance of different parametric 
functions (/1-/4). The final parametrizations were of course 
carried out using optimized geometries. 

In the parametrization for the elements C, H1N, and O, we 
divided the reference compounds into three groups, namely 
hydrocarbons, CHN systems, and CHO systems. Each group 
contained about ten standard molecules and was parametrized 
separately. The parameters for C and H were first determined 
from the first (hydrocarbon) group; these were then taken as 
constants in the parametrizations for N and O from com
pounds of the two other groups. 

Table I contains the standard molecules and reference 
quantities used in the first stage of the parameterization (fixed 
geometries). Note that we do in effect parametrize for 
geometries at this stage since we minimize, inter alia, the 
gradients of the energy with respect to the geometrical vari
ables. Thereby we adjust the parameters to reproduce equi
librium structures without optimizing the molecular geome
tries. 

In the second stage of the parameterization (optimized 
geometries), each of the three groups was at first still treated 
separately. The standard molecules and reference quantities 
were essentially the same as in the first stage, with the obvious 
exception that the gradients were replaced by the corre
sponding variables in the list of reference quantities.37 The 
parameters were then refined by a final parametrization in
cluding the molecules from all three groups, with the heats of 
formation as the only reference functions, and with simulta
neous adjustment of all the parameters. 

The weighting factors W/ for the various reference quantities 
are listed in Table II. With the selected sets of reference 
quantities (see Table I), the values chosen for the weighting 
factors ensure that the errors in the heats of formation usually 
amount to more than half of the total error (typically about 
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60%) and that most of the remaining error usually comes from 
the geometrical variables. 

The initial guess for the parameters was found to be quite 
important. Often there are several different sets of parameters 
that correspond to local minima of the function Y. Depending 
on our initial guess, the optimization may converge to an un
favorable local minimum with a high final Y value. Also, if we 
begin our search far away from any minimum, the optimization 
may initially lead to some unreasonable region of the surface 
from which it is hard to escape later; this is probably due to the 
approximate nature of the search direction vector at the be
ginning of the optimization. 

Since we encountered these difficulties on several occasions, 
we tried to find good initial guesses by a grid-type search in 
which each of the parameters was varied in steps over a phys
ically reasonable range. This procedure provided some infor
mation about the general shape of the surface in the region of 
interest. For each combination of parametric functions in
vestigated, we used this information to select at least three 
different initial sets of parameters. These sets were then opti
mized separately, and the results were considered to be reliable 
only if the separate optimizations converged to the same 
minimum. 

Our program terminates if the value of Y can no longer be 
lowered by adjusting the parameters. Near the end of the op
timization, there are usually a large number of cycles for which 
the value of Y is decreased by a very small amount in each 
cycle. Sometimes, however, such periods are followed by 
sudden further reductions in Y, probably because the search 
direction vector has been updated efficiently during these pe
riods, as a result of information derived from "side steps" (see 
above). We therefore adopted the rule that we terminate an 
ongoing optimization only if "side steps" have been taken in 
all possible search directions and if subsequently there have 
been at least 20 cycles without much progress. Thus for K 
parameters, we optimize at least for 4AT + 20 cycles.38-39 

The standardized procedure described above was used in all 
our parametrization studies. This enabled us to compare the 
performances of different parametric functions reliably. The 
choices for the sets of standard molecules and reference 
functions are certainly arbitrary, and different choices would 
probably lead to slightly different parameters. The selected 
sets, however, seem to be representative in the sense that the 
parameters obtained yield reasonable results for the molecules 
not included in the parametrization; this was often not true for 
smaller sets which we had tested initially. 

(IV) Choice of Parametric Functions 

Within the framework of the basic MNDO approximations, 
we have determined hydrocarbon parameters for about ten 
different combinations of parametric functions. We also par
ametrized the CHN and CHO systems using the five most 
promising sets of functions. Several conclusions follow from 
these studies. 

With regard to the one-center terms U1111, g^u, and It111n we 
had to decide whether to keep them constant at Oleari's 
values2223 or to treat them as adjustable parameters. The 
one-center terms are found to have little influence on the cal
culated heats of formation and geometries. Dipole moments 
and ionization potentials, however, strongly depend on the 
values of the U1111. parameters. We therefore decided to treat 
the U1111 terms as variable parameters but to retain Oleari's 
values2223 for the one-center repulsion integrals g„„ and /JM„.40 

This procedure was also used in MINDO/3.16 

In the case of the two-center repulsion integrals, we can 
choose between the DSK approximation, eq 13, or the MN 
approximation, eq 14, for the point charge interaction/] (/?,y). 
The two-center repulsion integrals are appreciably larger20 in 
DSK than in MN and the same applies to the core- electron 

attractions and the core-core repulsions. On the other hand, 
for optimized parameters, the resonance integrals /3Mx turn out 
to be smaller when using DSK rather than MN for the repul
sion integrals. The relative magnitudes of the diagonal and 
nondiagonal elements of the core Hamiltonian matrix are 
consequently different in the two cases, the nondiagonal ele
ments being more important in the Mataga-Nishimoto ap
proximation. 

Comparing the results for optimized parameters, we find 
similarly good predictions for most properties. Dipole moments 
of hydrocarbons are better reproduced by MN, but DSK is 
better for ionization potentials and MO orderings. Heats of 
formation are usually predicted somewhat better by DSK, 
particularly in the case of three-membered rings where the MN 
values are too negative. On balance, the DSK results seemed 
superior so we adopted the DSK approximation for calculating 
the two-center repulsion integrals.41 

As for the core-electron attractions, several expressions for 
the function/2^ AB) in (16) were found that could be par
ametrized to give reasonable results for hydrocarbons. For 
systems with heteroatoms, however, the use of these expres
sions led to unrealistic charge distributions with highly polar 
bonds. This is not surprising because the core-electron at
tractions V^,s appear in the diagonal elements of the Fock 
matrix. The function fi(RAB) consequently leads to unrealistic 
changes in the electronegativity of atoms in a molecule. We 
therefore decided to set 

/2(RAB) = 0 (20) 

and to include the net electrostatic repulsion between neutral 
atoms in the expression for the core-core repulsion. 

The functions fi{R\B) and/4(/?AB) in the formulas for the 
core-core repulsions and resonance integrals, respectively, each 
contain adjustable parameters that refer to the pair of atoms 
(A,B) in question. In MINDO,14-16 pair parameters are used, 
i.e., parameters characteristic of the atom pair involved. An 
alternative procedure, used, e.g., in CNDO,5 is to replace the 
pair terms in/3 and/4 by appropriate combinations of terms 
containing atomic parameters, i.e., parameters characteristic 
of individual atoms. This approach was tried in MINDO but 
abandoned because it seemed to lead to inferior results. In our 
work in NDDO, we tried a number of functions of both kinds, 
including those used in MINDO/3. To our surprise, the results 
using atomic parameters were generally comparable in quality 
with those using pair parameters. Only a few relatively trivial 
cases were found (e.g., bond lengths of OO bonds) where the 
use of pair parameters represented a notable improvement. 

Other things being equal, the use of atomic parameters is 
clearly preferable. In the first place the total number of pa
rameters is less for sets of three or more atoms and the differ
ence increases with the size of the set. Second, in the case of 
atomic parameters, only five additional parameters are needed 
to include an extra atom and these can be determined from 
data for molecules containing it in combination with any of the 
atoms already parametrized. In the case of pair parameters, 
the number of parameters needed to include an extra atom is 
much greater and they can be determined only if data are 
available for molecules containing the new atom in combina
tion with all the atoms already parametrized. Third, one may 
reasonably expect atomic parameters to vary uniformly with 
the position of atoms in the periodic table. Good approxima
tions to the parameters for new atoms should then be obtain
able by interpolation or extrapolation from values for atoms 
already parametrized. As indicated above, the parametrization 
procedure is greatly simplified if good initial guesses for the 
values of the parameters are available. 

In view of these considerations and in view of the relatively 
small advantages that pair parameters seemed to offer, we 
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Parameter B N O 

Ua, eV 
U„, eV 
f. a u 

0,.eV 

-11.906 276 

1.331 967 
-6.989 064 

-34.547 130 
-23.121 690 

1.506 801 

-8.252 054 

-52.279 745 
-39.205 558 

1.787 537 
-18.985 044 

-71.932 122 
-57.172 319 

2.255 614 

-20.495 758 

-99.643.09 
-77.797 472 

2.699 905 

-32.688 082 

•131.071 548 
-105.782 137 

2.848 487 
-48.290 460 

/3p.eV 
a. A"1 2.544 134 

Table IV. Derived MNDO Parameters 

Parameter H 

2.134 993 

B 

-7.934 122 
2.546 380 

C 

2.861 342 

N 

3.160 604 

O 

-36.508 540 
3.419 661 

F 

# r \ kcal mol-' 
Ee\\ eV 
0 i ,A 
D2, A 
Po, A 
PI, A 
P2, A 

52.102 
-11.906 276 

0.560 345 

135.70 
-64.315 950 

0.506 893 
0.430 113 
0.679 822 
0.539 446 
0.476 128 

170.89 
-120.500 606 

0.427 284 
0.362 563 
0.588 660 
0.430 254 
0.395 734 

113.00 
-202.581 201 

0.338 616 
0.287 325 
0.529 751 
0.337 322 
0.324 853 

59.559 
-317.868 506 

0.282 894 
0.240 043 
0.466 882 
0.275 822 
0.278 628 

18.86 
-476.683 781 

0.268 138 
0.227 522 
0.425 492 
0.243 849 
0.255 793 

decided to use atomic parameters for/3(flAB) and/4(i?AB) in 
MNDO. 

For the net electrostatic repulsion between two neutral 
atoms, we chose: 

/ 3 ( / ? A B ) = Z A Z B ( s A s A , sBsB)[e-QA/?AB + e-«B*AB] (21) 

a being an adjustable atomic parameter. Equation 21 is purely 
empirical, but it shows the correct behavior in the limit /?AB 
-* o= where f}(RAB) vanishes. For the pairs N-H and O-H, 
it was found advantageous to use a slightly modified expres
sion42 

MRXH) = Z x Z H (s x s x , sHsH)[CRXH/A)e-«<*xH 
+ e-aHRxH] (X = N, O) (22) 

the numerical values of the a parameters in eq 21 and 22 being 
the same for each element. 

The function /A(RAB) in the expression for the resonance 
integral fi^x (see eq 18) was chosen to be: 

/ 4 ( * A B ) = (ft* + /?xB)/2 (23) 

where /3M
A is an adjustable parameter characteristic of AO <f>^ 

at atom A. For a given first-row element, there are at most two 
different 0 parameters, i.e., /3S

A for the s AO and /3P
A for the 

p AO. For carbon, the results were improved significantly by 
optimizing /3S

C and /Jp
c separately, whereas for nitrogen and 

oxygen the two parameters could be set equal without im
pairing the quality of the results: 

ftx = /?p
x (X = N, O) (24) 

A final problem was to decide whether to use the same or dif
ferent orbital exponents fs and fp for the s and p AO's of a given 
element. In optimizations where both were treated as adjust
able parameters they usually converged to similar values. We 
therefore decided to set them equal to one another for each 
element. 

fsx=fP
x = fx (X = C N 5 O ) (25) 

This completes the description of the approximations and 
parametric functions used in the MNDO method, and we can 
now turn to the numerical values of the parameters. 

(V) MNDO Parameters 
Table III lists the optimized values of the MNDO param

eters for the elements H, B, C, N, O, and F. For convenience, 

parameters for B and F are included from later papers4344 in 
this series. The number of adjustable parameters for these el
ements is reduced from 61 in MINDO/3 to 31 in MNDO, due 
to the use of atomic instead of bond parameters. 

The optimized one-center energies Uss are quite close to 
Oleari's23 values, but our £/pp parameters are consistently 
smaller. The optimized Slater exponents f seem rather large, 
although they are not much greater than weighted averages 
of the s and p exponents in MINDO/3. In the parameteriza
tion, we usually used smaller exponents as our initial guess. 
However the optimization then led to the larger values reported 
here. 

Comparing the optimized parameters for different elements, 
it seems remarkable that they change quite regularly in the 
series C, N, O (cf. the values for the Slater exponents and for 
the a parameters). Indeed, it was possible to guess reasonable 
parameters for boron,43 fluorine,44a and beryllium44*3 by ex
trapolation. 

Apart from the optimized parameters in Table III, the 
MNDO method makes use of some derived parameters which 
are either taken from experimental data or calculated from the 
optimized parameters. The values for the one-center repulsion 
integrals have been given previously16'22 and those for the re
maining derived parameters are listed in Table IV. The ex
perimental heats of formation AZZr* of the atoms are taken 
from the literature,45 and the electronic energies £e|

A of the 
atoms are calculated from single-determinantal wave functions 
in MNDO approximation. Both quantities are used in eq 8 to 
convert the total energy of a molecule into its heat of formation. 
Finally, the charge separations Z)/ and the additive terms p/ 
are evaluated as specified in our model for the two-center re
pulsion integrals. 

(VI) Comparison of MNDO with MINDO/3 

The main difference between the NDDO and INDO ap
proximations lies in the treatment of the two-center repulsion 
integrals and the two-center core-electron attractions. NDDO 
provides a closer approximation to the full Fock matrix since 
it retains all two-center terms involving monoatomic differ
ential overlap. It has been shown that the NDDO approxi
mation is consistent with the neglect of the overlap integrals 
in the normalization of the eigenvectors.7 It also leads to quite 
an accurate approximation for symmetrically orthogonalized 
basis orbitals,46-48 which is not true for the INDO approxi-
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mation. Clearly there is more theoretical justification for the 
use of NDDO than for INDO. 

From a physical point of view, the INDO approximation 
takes into account only the monopole of a charge distribution, 
whereas the NDDO approximation includes the higher mul-
tipoles and their interactions in the treatment of the two-center 
terms. Thus the two-center electron-electron repulsions and 
core-electron attractions are spherically averaged in INDO, 
whereas in NDDO they show an angular dependence, due to 
the possible different orientations of the higher multipoles. In 
INDO, the directionality of chemical bonding is only repre
sented in the resonance integrals /3„\ while in NDDO it is also 
included in the two-center electron-electron repulsions and 
core-electron attractions. Therefore we would expect an 
NDDO-based method to be superior to an INDO-based 
method whenever directional effects play an important role 
in a molecule. 

In the following paper,49 detailed MNDO results will be 
given for a large number of molecules. These indicate that the 
average absolute error for most ground state properties is re
duced by about one-half in passing from MINDO/3 to 
MNDO. Here we may note some particular areas where 
MNDO appeared consistently superior to MINDO/3 
throughout our parametrization studies. Such improvements 
cannot be attributed to any special choice of parametric 
functions or to especially efficient parametrization. They must 
rather indicate areas where the superiority of MNDO is due 
to the superiority of the NDDO approximation. 

The first area was concerned with heats of formation of 
unsaturated molecules. In MINDO/3, the calculated heats 
of formation of aromatic hydrocarbons were consistently too 
positive and those of compounds with triple bonds (C=C, 
C=N) too negative. Both these deficiencies are overcome in 
MNDO. 

Second, the MINDO/3 heats of formation for molecules 
containing adjacent atoms with unshared pairs of electrons 
(e.g., H2N-NH2) were too negative and the corresponding 
bonds too short. These errors were attributed to the neglect of 
one-center overlap in the INDO approximation. As one would 
expect on this basis, the corresponding MNDO results are close 
to experiment. 

Third, MINDO/3 bond angles were often subject to quite 
large errors. The MNDO values are very much better, par
ticularly for angles at C or N. This difference can be attributed 
to the better treatment of directional effects in bonding in the 
NDDO approximation (see above). 

Finally, the ordering of MO's in MNDO agrees much better 
with that deduced from photoelectron spectroscopy than that 
in MINDO/3. In particular, MNDO gives no spurious high-
lying <r orbitals in the case of unsaturated compounds. This 
improvement is probably again due to the better description 
of directional effects in bonding, leading to a correspondingly 
better distinction between a and ir electrons, and to the better 
description of repulsions due to hybridization moments. 

The theoretical advantages of NDDO over INDO therefore 
seem to be fully borne out by our studies. Since the time re
quired for calculations by MNDO is only ca. 20% greater than 
for MINDO/3, it seems likely that MNDO will prove even 
more useful as an aid in interpreting chemical behavior. 
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Abstract: Heats of formation, molecular geometries, ionization potentials, and dipole moments are calculated by the MNDO 
method for a large number of molecules. The MNDO results are compared with the corresponding MINDO/3 results on a sta
tistical basis. For the properties investigated, the mean absolute errors in MNDO are uniformly smaller than those in 
M IN DO/3 by a factor of about 2. Major improvements of MNDO over MINDO/3 are found for heats of formation of unsat
urated systems and molecules with NN bonds, for bond angles, for higher ionization potentials, and for dipole moments of 
compounds with heteroatoms. 

(I) Introduction 

In the preceding paper,1 we have introduced the approxi
mations and parameters of the MNDO method (modified 
neglect of diatomic overlap). Here we report MNDO results 
for heats of formation, molecular geometries, ionization po
tentials, and dipole moments of a large number of molecules 
and compare them with the corresponding MINDO/3 values.2 

All results in this paper were derived from single-determinantal 
MNDO calculations, without inclusion of configuration in
teraction (CI), and refer to molecular structures optimized by 
the Davidon-Fletcher-Powell method.3 

(II) Heats of Formation 

Tables I and II compare calculated and observed heats of 
formation for a set of 138 closed shell molecules, selected to 
represent as many bonding situations as possible and with 
emphasis on those which had presented problems in MINDO. 
The mean absolute error for these compounds is reduced from 
11.0 kcal/mol in MINDO/3 to 6.3 kcal/mol in MNDO. 

Here, and subsequently, we use average errors as a measure 
of accuracy, rather than standard deviations, because our 
compounds were not chosen at random. Indeed, in view of our 
deliberate inclusion of molecules that had proved especially 
"difficult" in previous studies, the errors reported here are 
certainly greater than they would have been for a randomly 
chosen set. 

The main improvements of MNDO over MINDO/3, are 
found (Table I) in the case of aromatic systems, molecules with 
triple bonds (C=C, C=N), three-membered rings, globular 
polycylic compounds with five- or six-membered rings, and 
molecules with NN bonds. Some of these improvements (e.g., 
for unsaturated systems and NN bonds) are probably due to 
the inclusion of directional effects in the two-center MNDO 
electron-electron repulsions and core-electron attractions.1 

Large errors in the MNDO heats of formation (10-20 
kcal/mol) are encountered in three areas where MINDO/3 
met with similar difficulties. Four-membered rings are con
sistently predicted too stable and sterically crowded molecules 

with adjacent methyl groups (e.g., tert-buty\ compounds) too 
unstable, while molecules with NO bonds show errors in both 
directions. The first two shortcomings (four-membered rings, 
sterically crowded molecules) seem to be inherent in the basic 

Table I. Mean Absolute Errors A(A//f) for Heats of Formation" 

Class of compd 

All compounds 
Hydrocarbons 

With aromatic rings 
With triple bonds 
With three-membered rings* 
With four-membered rings* 
Acyclic hydrocarbons 
Cyclic hydrocarbons 
Bicyclic hydrocarbons with 5-

and 6-membered rings 
Nitrogen compounds (CHN) 

Amines 
Cyanides 
With NN bonds 

Oxygen compounds (CHO) 
Alcohols, ethers 
Aldehydes, ketones 
Acids, esters, anhydrides 
With OO bonds 

Nitrogen-oxygen compounds 
(CHNO) 

All compounds excluding those 
with 4-membered rings, 
tert-buty\ groups, 
or NO bonds 

No. 

138 
58 
5 
6 
8 
7 

26 
32 
5 

34 
11 
8 

11 
39 
12 
10 
9 
5 
7 

122 

A(A//f), kcal/mol 

MNDO 

6.3 
6.0 
1.7 
6.6 
5.2 

18. lc 

3.5 
8.0 
2.9 

6.5 
4.1 
4.6 
8.1 
5.2 
4.3 
4.3 
3.2 
7.7 

14.8 

5.0 

MINDO/3 

11.0 
9.7 

12.1 
13.5 
11.7 
8.6 
6.9 

11.9 
22.3 

17.3 
6.9 

19.6 
29.5 
6.8 
5.7 
6.1 
6.8 
3.4 

15.4 

10.9 

" Based on the results in Table II. * Including bicyclic compounds. 
Molecules containing three- and four-membered rings were counted 
in the class of four-membered rings only. c Excluding cubane, the 
mean absolute error reduces to 13.5 kcal/mol. 
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